
Chapter 4

The Lebesgue Spaces

In this chapter we study Lp-integrable functions as a function space. Knowledge
on functional analysis required for our study is briefly reviewed in the first two
sections. In Section 1 the notions of normed and inner product spaces and their
properties such as completeness, separability, sequential compactness and espe-
cially the so-called projection property are discussed. Section 2 is concerned with
bounded linear functionals and the dual space of a normed space. The Lp-space
is introduced in Section 3, where its completeness and various density assertions
by simple or continuous functions are covered. The dual space of the Lp-space is
determined in Section 4 where the key notion of uniform convexity is introduced
and established for the Lp-spaces. Finally, we study strong and weak conver-
gence of Lp-sequences respectively in Sections 5 and 6. Both are important for
applications.

4.1 Normed Spaces

In this and the next section we review essential elements of functional analysis
that are relevant to our study of the Lp-spaces. You may look up any book on
functional analysis.

Let X be a vector space over R. A norm on X is a map from X → [0,∞)
satisfying the following three “axioms”: For ∀x, y, z ∈ X,

(i) ∥x∥ ≥ 0 and is equal to 0 if and only if x = 0;

(ii) ∥αx∥ = |α| ∥x∥, ∀α ∈ R; and

(iii) ∥x+ y∥ ≤ ∥x∥ + ∥y∥.

The pair (X, ∥·∥) is called a normed vector space or normed space for short. The
norm induces a metric on X given by

d(x, y) = ∥x− y∥ .
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Hence, a normed space is always a metric space and a topological one. We can
talk about convergence, continuity, etc. in a normed space. The notion of a
Cauchy sequence also makes sense in a metric space, that is, a sequence {xn}
in a metric space (X, d) is called a Cauchy sequence if for every ε > 0, there
is an n0 such that d(xn, xm) < ε, for all n,m ≥ n0. Recall that a metric is
complete if every Cauchy sequence is convergent. A complete normed space is
called a Banach space. A general result asserts that every normed space is a dense
subspace of some Banach space, and this Banach space is called the completion
of the normed space.

Here are some examples of Banach spaces.

� Rn is a Banach space under the Euclidean norm ∥x∥ =
√∑

x2
j .

� ℓp =
{
x = (x1, x2, . . . ) :

∑
j |xj|p < ∞, xj ∈ R

}
, 1 ≤ p ≤ ∞, under the

ℓp-norm: ∥x∥p =
(∑

j |xj|p
)1/p

, 1 ≤ p < ∞, ∥x∥∞= supj|xj|.

� C([0, 1]) = {continuous functions on [0, 1]} under the uniform norm (or
sup-norm)

∥f∥∞ = sup {|f(x)| : x ∈ [0, 1]}
= max {|f(x)| : x ∈ [0, 1]} .

� C(K) where K is a compact subset in Rn or a compact metric space. It
is also a normed space under the sup-norm. It becomes C([0, 1]) when
K = [0, 1].

Let X1 be a subspace of the normed space (X, ∥·∥). Then (X1, ∥·∥) is again a
normed space. The followings are some subspaces in C([0, 1]):

P ([0, 1]) = {The restrictions of all polynomials on [0, 1]} ,
C1([0, 1]) = {All continuously differentiable functions on [0, 1]} ,
C0([0, 1]) = {All continuous functions with f(0) = f(1) = 0} ,
Cc((0, 1)) = {All continuous functions on (0, 1) vanishing near 0 and 1} .

Among these four subspaces, only the third one is a Banach space.

The properties of finite dimensional and infinite dimensional normed spaces
are very different. Let us look at the finite dimensional one first.

The Euclidean space (Rn, ∥·∥) is a typical finite dimensional normed space. It
has the following four basic properties. Later we will contrast them with those
in infinite dimensional spaces.

� Completeness. Every finite dimensional normed space is a Banach space.
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� Separability. Recall that a topological space is separable if it has a count-
able, dense subset. Rn is separable as it possesses the countable dense
subset Qn.

� The sequential compactness. A normed space is sequentially compact if
every bounded sequence in X has a convergent subsequence. It is well-
known that Rn has this property.

� Projection Property. Let X1 be a proper, closed subspace of the normed
space X and x0 not in X1. X is called to have the projection property if
there exists some z ∈ X1 such that

∥z − x0∥ = inf {∥x− x0∥ : x ∈ X1} .

In other words, there is a point on X1 realizing the distance from x0 to X1.
Rn has this property.

In fact, it is instructive to see how this is proved. Let {xj} be a minimizing
sequence of d, i.e., ∥xj − x0∥ → d as j → ∞. Taking ε = 1, there is some j0
such that ∥xj − x0∥ ≤ d+1, ∀j ≥ j0. It follows that {xj} is a bounded sequence:
∥xj∥ ≤ ∥xj − x0∥ + ∥x0∥ ≤ d + 1 + ∥x0∥. By sequentially compactness, there is
a convergent subsequence {xjk}, xjk → z for some z ∈ X1. By the continuity of
the norm, ∥xjk − x0∥ → ∥z − x0∥. On the other hand, ∥xjk − x0∥ → d as {xj} is
minimizing. We conclude that ∥z − x0∥ = d.

An inner product on the normed space X over R is a map : X × X → R
satisfying, for all x, y, z ∈ X,

(i) ⟨x, x⟩ ≥ 0, and equal to 0 if and only if x = 0,

(ii) ⟨x, y⟩ = ⟨y, x⟩,

(iii) ⟨αx+ βy, z⟩ = α ⟨x, z⟩+ β ⟨y, z⟩, for all α, β ∈ R,

Note it follows that

⟨x, αy + βz⟩ = α ⟨x, y⟩+ β ⟨x, z⟩ .

The pair (X, ⟨ , ⟩) is called in inner product space. The Euclidean product, or
the dot product, on Rn is given by

⟨x, y⟩e =
n∑

j=1

xjyj.

It makes Rn an inner product space. In general, an inner product induces a norm
by

∥x∥ =
√

⟨x, x⟩e.
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For instance, the Euclidean norm comes from the Euclidean product. An inner
product space is called a Hilbert space if it is a Banach space in the induced
norm.

Using the inner product structure on the Euclidean space, we have the follow-
ing characterization of the point that minimizes the distance between x0 and X1

in the projection property, namely, z is the projection of x0 onto X1 if and only
it satisfies

⟨x, x0 − z⟩ = 0, ∀x ∈ X1. (4.1)

Now I compare C([0, 1]), or C[0, 1] for simplicity, with the Euclidean space.
It is easy to show that C[0, 1] is an infinite dimensional vector space.

� Completeness. Yes, C[0, 1] is complete under the sup-norm. In elemen-
tary analysis we proved that the uniform limit of a sequence of continuous
functions is continuous.

� Separability. Yes. By the Weierstrass approximation theorem, every contin-
uous function on [0, 1] can be approximated by polynomials with rational
coefficients. Thus the collection of all these polynomials forms a count-
able, dense set in C([0, 1]). More generally, it can be shown that C(K) is
separable when K is a compact metric space.

� The Sequential Compactness. Not any more. In fact, let fn be the piecewise
linear function which is equal to 0 at 0 and [1/n, 1] and fn(1/2n) = 1.
Clearly fn(x) → 0 ∀x ∈ [0, 1]. However, it does not contain any uniformly
convergent subsequence. Suppose on the contrary that there exists some
{fnj

} converging to some continuous f . Then f must be the zero function.
For every ε > 0, there is some j0 such that∥∥fnj

− 0
∥∥
∞ < ε, j ≥ j0.

Taking ε = 1/2,
∥∥fnj

∥∥
∞ < 1/2 for all large j. But

∥∥fnj

∥∥
∞ = 1, contradic-

tion holds. Hence sequential compactness no longer holds in C([0, 1]). It is
a bit striking that this property characterize finite dimensionality.

Theorem 4.1. Sequential compactness holds on a normed space X if and
only if X is finite dimensional.

See, for instance, Theorem 2.1.2 in my notes on functional analysis.

� Projection Property. No. But the construction of an example is not easy
(see exercise). I just want to point out that very often a property so obvious
for a finite dimensional space may not hold in an infinite dimensional space.
If it holds, more effort is need to established it. Fortunately, this property
holds in Hilbert spaces.

4



Theorem 4.2. Let X be a Hilbert space and x0 /∈ X1 where X1 is a proper closed
subspace. There exists a unique z ∈ X1 such that

∥z − x0∥ = inf {∥x− x0∥ : x ∈ X1} ,

and (4.1) holds.

Proof. First of all, by expanding ∥x± y∥2= ⟨x± y, x± y⟩, we have the parallel-
ogram rule

∥x+ y∥2+∥x− y∥2= 2(∥x∥2+∥y∥2)

which is true on every inner product space. Now, let {yk} be a minimizing
sequence for d = inf {∥y − x0∥ : y ∈ X1}, that is, ∥yk −x0∥→ d as k → ∞. Using
the parallelogram rule, we have

∥yk − ym∥2= 2
(
∥yk − x0∥2+∥ym − x0∥2

)
− 2

∥∥∥∥yk + ym
2

− x0

∥∥∥∥2 .
As (yk + ym)/2 belongs to X1, ∥(yk + ym)/2− x0∥≥ d. Given ε > 0, there exists
some n0 such that ∥yn − x0∥2−d2 < ε for all n ≥ n0. It follows that

∥yk − ym∥≤ 2d2 + 2ε− 2d2 = 2ε,

for all k,m ≥ n0. Thus {yk} is a Cauchy sequence in X1. As X1 is closed, this
sequence converges to some z in X1 which satisfies ∥z − x0∥= d.

In case there is another z1 ∈ X1 satisfying ∥z1 − x0∥= d, we have

∥z1 − z∥2 = 2(∥z1 − x0∥2+∥z − x0∥2)− 2

∥∥∥∥z1 + z

2
− x0

∥∥∥∥2
= 2d2 − 2

∥∥∥∥z1 + z

2
− x0

∥∥∥∥2 ≤ 0,

which forces z1 = z.

It is interesting to note that this property is proved by sequential compact-
ness in the finite dimensional case. While the Bolzano-Weierstrass property no
longer holds for infinite dimensional spaces, the inner product replaces sequential
compactness in establishing the projection property.

4.2 Bounded Linear Functionals

A linear functional on a vector space is a linear map from X to R. It is called
bounded if there is some M such that

|Λx| ≤ M ∥x∥ , ∀x ∈ X. (4.2)
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It means Λ maps bounded sets in X to bounded intervals.

Proposition 4.3. A linear functional on the normed space X is bounded if and
only if it is continuous.

All bounded linear functionals on X form a normed vector space under the
operator norm:

∥Λ∥op = sup {|Λx| : ∥x∥ ≤ 1} .

Furthermore, it is complete regardless of the completeness of X. This Banach
space is called the dual space of X and is denoted by (X ′, ∥·∥op).

The dual space of Rn can be identified with itself.

Theorem 4.4. There is a bijective, norm-preserving linear map between ((Rn)′, ∥·∥op)
and (Rn, ∥·∥).

In view of this, the Euclidean space is self-dual. Indeed, let Λ ∈ (Rn)′. For
x ∈ Rn, x =

∑
j αjej where {ej} is the canonical basis of Rn. We have

Λx = Λ
(∑

αjej

)
=
∑

αjΛ(ej).

The map Φ : (Rn)′ → Rn given by Φ(Λ) = (Λe1, . . . ,Λen) is the desired bijective,
norm-preserving linear map.

A fundamental result concerning linear functionals is the Hahn-Banach theo-
rem.

Theorem 4.5. Let X1 be a subspace of the vector space X. Suppose p is a
sublinear function defined on X. Any linear functional Λ on X1 satisfying |Λx|≤
p(x), ∀x ∈ X1, has an extension to a linear functional Λ′ on X satisfying |Λ′x|≤
p(x), ∀x ∈ X.

A function p : X → [0,∞) is sublinear if for all x, y ∈ X, α ≥ 0,

p(x+ y) ≤ p(x) + p(y), and

p(αx) = αp(x), α ≥ 0

hold. The norm is of course a sublinear function on X. Taking the sublinear
function to be a constant multiple of the norm, we have the following version of
Hahn-Banach theorem that applies to normed spaces.

Theorem 4.6. Let X1 be a subspace of the normed space X. Every bounded
linear functional Λ on X1 satisfying |Λx| ≤ M ∥x∥, ∀x ∈ X1, has an extension
to a bounded linear functional Λ′ on X satisfying |Λ′x|≤ M ∥x∥.
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We conclude this section by a discussion on the “codimension one” property
of the kernel of Λ.

It is easy to see that ker Λ = {x : Λx = 0} is a closed subspace of the normed
space X whenever Λ ∈ X ′.

Proposition 4.7. Let Λ ̸= 0 be a non-zero linear functional on X and x1 /∈ kerΛ.
For each x ∈ X, there exist α ∈ R and x2 ∈ kerΛ such that

x = αx1 + x2.

Proof. Let x2 = x− αx1 where α = Λx/Λx1. Then

Λx2 = Λ(x− αx1)

= Λx− αΛx1

= Λx− Λx

Λx1

Λx1 = 0.

This proposition tells us that the space is spanned by the kernel of a non-zero
bounded linear functional together with a one dimensional subspace spanned any
fixed vector lying outside the kernel. Consequently, the kernel is of “codimension
one”.

Theorem 4.8. Let Λ1 and Λ2 be two non-zero linear functionals on X such that
kerΛ1 = kerΛ2. Then Λ2 = cΛ1 for some non-zero constant c.

Proof. Pick x0 /∈ kerΛ1. From x = (Λ1x/Λ1x0)x0 + y, y ∈ kerΛ1 = kerΛ2, we
have Λ2x = (Λ1x/Λ1x0)Λ2x0, hence Λ2x = αΛ1x where α = Λ2x0/Λ1x0.

In fact, this theorem holds under the weaker assumption that ker Λ1 ⊂ kerΛ2,
see exercise.

The codimension one property has the following interesting consequence for
Hilbert spaces.

Theorem 4.9. Let Λ ∈ X ′ where X is a Hilbert space. There exists a unique
w ∈ X such that Λx = ⟨x,w⟩, ∀x ∈ X.

There is a formula for w in the following proof. With further effort, one
can show that Λ 7→ w is a bijective, norm-preserving linear map. Generalizing
Theorem 4.4, every Hilbert space is self-dual.

Proof. Assume that the functional Λ is non-zero. We pick x0 /∈ kerΛ and let
z ∈ kerΛ satisfy ⟨x, x0 − z⟩ = 0 for all x ∈ kerΛ. Therefore, the linear functional
Λ′ given by Λ′x = ⟨x, x0 − z⟩ has the same kernel as Λ and so these two functionals
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differ by a multiplying constant c so that Λx = ⟨x,w⟩, w = c(x0 − z). A more
explicit form of w can be obtained as follows. From the last corollary we have

Λ′x =
Λ′x0

Λx0

Λx

=
⟨x0, x0 − z⟩

Λx0

Λx

=
∥x0 − z∥2

Λx0

Λx,

which implies Λx = ⟨x,w⟩ where

w =
(Λx0)(x0 − z)

∥x0 − z∥2
.

4.3 Lebesgue Spaces

Let (X,M, µ) be a measure space and 0 < p < ∞. A measurable function f is
called a p-integrable function if |f |p is integrable.

Proposition 4.10 (Hölder’s Inequality). Let f and g be measurable. For
1 < p < ∞, ∫

X

|fg| dµ ≤
(∫

X

|f |p dµ

) 1
p
(∫

X

|g|q dµ

) 1
q

,

where q is conjugate to p. Moreover, when the right hand side of this inequality
is finite, equality sign holds if and only if either (a) f or g vanishes a.e. or (b)
there are some α, β ≥ 0, αβ ̸= 0, such that α |f |p = β |g|q a.e. .

Recall that for p, q ∈ [1,∞], p and q are conjugate if 1/p+ 1/q = 1.

Proposition 4.11 (Minkowski’s Inequality). Let f and g be measurable. For
1 ≤ p < ∞, (∫

X

|f + g|p dµ

) 1
p

≤
(∫

X

|f |p dµ

) 1
p

+

(∫
X

|g|p dµ

) 1
p

.

Minkowski’s inequality could be deduced from Hölder’s inequality, and Hölder’s
inequality follows from Young’s inequality or Jensen’s inequality. You are referred
to [R] for the proofs of these inequalities.

Let
Lp(X,M, µ) = {all p-integrable functions on (X,M, µ)} .
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Letting

∥f∥p =
(∫

X

|f |p dµ

) 1
p

, 1 ≤ p < ∞,

it follows from Minkowski’s inequality that

∥f + g∥p≤ ∥f∥p+∥g∥p, f, g ∈ Lp(X,M, µ).

It is almost a norm except that ∥f∥p= 0 implies f = 0 almost everywhere but not
necessarily everywhere. To obtain a normed space, we introduce an equivalence
relation ∼ on Lp(X,M, µ) by setting

f ∼ g if and only if f − g = 0 a.e.

This equivalence relation partitions all Lp-functions into equivalent classes f̃ .
Define

∥f̃ ∥̃p = ∥f∥p , f ∈ f̃ .

Then (L̃p(X,M, µ), ∥·∥̃p) becomes a normed space. In practise, people do not

distinguish ∥·∥̃p from ∥·∥p. They simply write Lp(X,M, µ) or even Lp(µ) for

(L̃p(X,M, µ), ∥·∥̃p).

Theorem 4.12. Let {fn} be a Cauchy sequence in Lp(µ). There exists f ∈ Lp(µ)

such that ∥fn − f∥p → 0 as n → ∞. Consequently, L̃p(µ) is a Banach space for
1 ≤ p < ∞.

Proof. Let {fn} be a Cauchy sequence of p-integrable functions. For ε = 1/2j,
there exists nj such that ∥fn − fm∥p < 1/2j ∀n,m ≥ nj. We could choose nj

such that nj ↑ ∞. Then∥∥fnj+1
− fnj

∥∥
p
<

1

2j
, ∀j ≥ 1.

Pick a null set N1 so that all fnj
are finite in X1 = X \N1. Set

gn =
n∑

j=1

∣∣fnj+1
− fnj

∣∣ ,

and

g =
∞∑
j=1

∣∣fnj+1
− fnj

∣∣
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on X1 and g = 0 in N1. By Minkowski inequality,∫
X

gpn dµ =

∫
X

( n∑
j=1

∣∣fnj+1
− fnj

∣∣ )p dµ
≤

(
n∑

j=1

∥fnj+1
− fnj

∥p

)p

≤

(
n∑

j=1

1

2j

)p

≤ 1 .

By Fatou’s lemma, ∫
X

gp dµ ≤ lim inf
n→∞

∫
X

gpn ≤ 1.

Hence g ∈ Lp(µ) and in particular is finite almost everywhere. Let N2 ≡ {x ∈
X1 : g(x) = ∞} and X2 = X1 \N2 = X \ (N1 ∪N2) and set

hk =
k∑

j=1

(
fnj+1

− fnj

)
.

For x ∈ X2,

|hk(x)− hl(x)| ≤
k∑

j=l+1

|fnj+1
− fnj

|(x) → 0, as k, l → ∞,

since g is finite in X2. We conclude that {hk(x)} is a numerical Cauchy sequence
and hence

h =
∞∑
j=1

(
fnj+1

− fnj

)
is well-defined in X2. We may set h(x) = 0 elsewhere so that it is a measurable
function defined in X. From |hk|≤ g we also know that h ∈ Lp(X) as a result of
Lebesgue’s dominiated convergence theorem. By the same reason, using |h−hk|≤
|h|+|hk|≤ 2g, we conclude ∥h − hk∥p→ 0 as k → ∞. Define f = fn1 + h. It
follows that ∥f − fnk+1

∥p= ∥h − hk∥p→ 0 as k → ∞. (In fact, we also have
fnk+1

(x) − f(x) = hk(x) − h(x) → 0 at every x ∈ X2, that is, the subsequence
{fnk

} converges to f almost everywhere.) We conclude that fnk
→ f in Lp-norm

and almost everywhere as nk → ∞.
Now, for ε > 0, there is some n0 such that

∥fn − fm∥p <
ε

2
, ∀n,m ≥ n0.
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On the other hand, there is some k0 such that

∥fnk
− f∥p <

ε

2
, ∀k ≥ k0.

We pick nk ≥ n0 and k ≥ k0, then

∥fn − f∥p ≤ ∥fn − fnk
∥p + ∥fnk

− f∥p <
ε

2
+

ε

2
= ε,

whence {fn} converges to f in Lp(µ).

Finally, for a Cauchy sequence {f̃n} in L̃p(µ), pick fn ∈ f̃n. Then {fn} is
a Cauchy sequence of Lp-integrable functions. From what we have just proved,
there exists a Lp-integrable function f such that ∥fn − f∥p → 0. Then ∥f̃n − f̃ ∥̃p =
∥fn − f∥p → 0 once we take f̃ to be the equivalence class containing f .

From the above proof we also have the following useful information.

Corollary 4.13. If fn → f in Lp(µ), there exists a subsequence {fnk
} converging

to f a.e. .

This result is already known for p = 1, see the last section in Chapter 1.

After ascertaining that Lp(µ) is a Banach space, we study the approximation
properties of these spaces.

First, we consider the density of simple functions in Lp(µ). Recall that a
simple function s is in the form

s(x) =
n∑

j=1

αjχEj
(x), αj ̸= 0 ∈ R, Ej measurable.

Let
S = {s : s is a simple function with µ(Ej) < ∞, ∀j = 1, . . . , n} .

Proposition 4.14. The set S is dense in Lp(µ) for p ∈ [1,∞).

Proof. By writing f = f+−f− and noting |f |p = |f+|p+ |f−|p, it suffices to prove
the proposition for non-negative f . By Theorem 1.6, there exists a sequence of
simple functions {sk} ↑ f . Using 0 ≤ f − sk ≤ f , we can apply the Lebesgue’s
dominated convergence theorem to get

lim
k→∞

∫
|f − sk|p dµ =

∫
lim
k→∞

|f − sk|p dµ = 0.

It remains to verify sk ∈ S, n ≥ 1, but this is evident. As sk =
n∑

j=1

αjχEj
where
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αj > 0. As sk ≤ f , spk ≤ |f |p implies αp
jµ(Ej) ≤

∫
|f |p dµ < ∞ for each j. So

µ(Ej) < ∞ and sk ∈ S for all k.

When the underlying space X has a topological structure, one should study
the density of continuous functions. We have

Proposition 4.15. Let X be a locally compact Hausdorff space and µ a Riesz
measure on X. Then Cc(X) is dense in Lp(µ) for 1 ≤ p < ∞.

Proof. Using Proposition 4.13 and the definition of S, it suffices to show that for
every measurable E, µ(E) < ∞, we can find a sequence of continuous functions
{φj} ⊂ Cc(X) such that φj → χE in Lp-norm. By the outer and inner regularity
of E, there are descending open sets {Gj} ↓ E and ascending compact sets {Kj} ↑
E with µ(G1) < ∞. As X is locally compact Hausdorff, by Urysohn’s lemma,
for each j there is some φj ∈ Cc(X), φj ≡ 1 on Kj, sptφj ⊂ Gj, 0 ≤ φj ≤ 1 on
X. Using φj ≤ χG1 and µ(G1) < ∞, one can apply the Lebesgue’s dominated
convergencr theorem to conclude φj → χE in Lp(µ).

Proposition 4.16. The space Lp(Rn) is separable for 1 ≤ p < ∞.

Here Lp(Rn) stands for the Lp-space with respect to Ln, the n-dimensional
Lebesgue measure.

Proof. Let Pn be the collection of the restrictions of all polynomials with rational
coefficients on the ball Bn centered at the origin (setting them to be zero outside
the ball) and and P =

⋃
nPn. Then P is a countable subset in Lp(Rn). For

f ∈ Lp(Rn), given ε > 0, there exists some g ∈ Cc(Rn) such that ∥f − g∥p < ε/2.
Let n be large so that sptg ⊂ Bn. By Weierstrass approximation theorem, there
is a polynomial h ∈ Pn such that ∥g − h∥∞ < ε/(2 |Ln(Bn)|1/p). Using

∥g − h∥p =
(∫

|g − h|p dLn

) 1
p

≤ |Ln(Bn)|
1
p ∥g − h∥∞ ,

we have

∥f − h∥p ≤ ∥f − g∥p + ∥g − h∥p
<

ε

2
+ |Ln(Bn)|

1
p

ε

2 |Ln(Bn)|
1
p

= ε.
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4.4 The Dual Space of Lp(µ)

We would like to determine the dual space of Lp(µ) for p ∈ (1,∞). Let g ∈ Lq(µ)
where q is conjugate to p. We define

Λgf =

∫
gf dµ, f ∈ Lp(µ).

By Hölder inequality,

|Λgf | ≤
∣∣∣∣∫ gf dµ

∣∣∣∣
≤
∫
|gf | dµ

≤ ∥g∥q ∥f∥p , ∀f ∈ Lp(µ).

Hence, Λg ∈ Lp(µ)′ and
∥Λg∥ ≤ ∥g∥q

holds. On the other hand, the function f1 = |g|q−2 g satisfies∫
|f1|p dµ =

∫
|g|(q−1)p dµ =

∫
|g|q dµ < ∞,

so f1 ∈ Lp(µ). We have
|Λgf1| ≤ ∥Λg∥ ∥f1∥p ,

that is, ∫
|g|q dµ ≤ ∥Λg∥

(∫
|g|q dµ

) 1
p

,

which means
∥g∥q ≤ ∥Λg∥ .

We conclude that the linear map Φ : Lq(µ) → Lp(µ)′ given by g 7→ Λg is norm-
preserving. Note that norm-preserving implies that Φ is injective. We will show
that it is also surjective. We have

Theorem 4.17. Let Λ ∈ Lp(µ)′, 1 < p < ∞. There is a unique g ∈ Lq(µ) such
that Λ = Λg. The correspondence between Λ and g sets up a norm-preserving

linear bijection between the dual space of L̃p(µ) and L̃q(µ).

To prepare for the proof of this theorem, we introduce a notion of uniform
convexity in functional analysis. A normed space is called uniformly convex if for
any two unit vectors satisfying ∥x− y∥ ≥ ε for some ε ∈ (0, 1), there exists some
θ ∈ (0, 1) depending on ε only such that ∥(x+ y)/2∥ ≤ 1− θ. This terminology
comes from the shape of the unit sphere. For instance, the plane R2 in the
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Euclidean metric is uniformly convex, but is not in the maximal norm ∥(x, y)∥∞=
max{|x|, |y|}, as its unit sphere is given by the boundary of the unit square
[−1, 1]2. Taking (1, 1) and (1,−1) on this unit sphere, ∥((1, 1)+(1,−1))/2∥∞= 1.
Every Hilbert space is uniformly convex, for, by the parallelogram law, for any
two units vectors x and y,

∥x+ y∥2 + ∥x− y∥2 = 2
(
∥x∥2 + ∥y∥2

)
= 4,

thus, ∥∥∥∥x+ y

2

∥∥∥∥2 = 1− 1

4
∥x− y∥2 ≤ 1− ε2

4
< 1.

So, we can find some θ ∈ (0, 1) such that ∥(x+ y)/2∥ < 1 − θ. We will use uni-
form convexity in the following way: In case ∥(x+ y)/2∥→ 1, then ∥x− y∥→ 0.

The projection property holds in a uniformly convex space. This is the crucial
property that we will use.

Proposition 4.18. Let X1 be a proper, closed subspace of a uniformly convex
Banach space X and x0 a point lying outside X1. There exists a unique z ∈ X1

such that
∥z − x0∥≤ ∥y − x0∥, ∀y ∈ X1.

Proof. Let {yn} ∈ X1 be minimizing the distance from x0 to X1, that is, ∥yn −
x0∥→ d as n → ∞. Noting that the distance d is positive and {yn} is bounded,
we have

lim inf
n,m→∞

∥∥∥∥ yn − x0

∥yn − x0∥
+

ym − x0

∥ym − x0∥

∥∥∥∥
≥ lim inf

n,m→∞

∣∣∣∣∥∥∥∥ yn − x0

∥yn − x0∥
+

ym − x0

∥ym − x0∥
−
(
yn − x0

d
+

ym − x0

d

)∥∥∥∥− ∥∥∥∥yn − x0

d
+

ym − x0

d

∥∥∥∥∣∣∣∣
≥ 2

d
lim inf
n,m→∞

∥1
2
(yn + ym)− x0∥

≥ 2,

after using the fact that (yn+ym)/2 ∈ X1 and ∥(yn+ym)/2∥≥ d. In other words,
we have

lim inf
n,m→∞

∥∥∥1
2

( yn − x0

∥yn − x0∥
+

ym − x0

∥ym − x0∥

)∥∥∥ ≥ 1.

On the other hand, clearly we have∥∥∥1
2

( yn − x0

∥yn − x0∥
+

ym − x0

∥ym − x0∥

)∥∥∥ ≤ 1,

14



so

lim
n,m→∞

∥∥∥∥12
(

yn − x0

∥yn − x0∥
+

ym − x0

∥ym − x0∥

)∥∥∥∥ = 1 .

By uniform convexity,

lim
n,m→∞

∥yn − ym∥ = d lim
n,m→∞

∥∥∥∥yn − x0

d
− ym − x0

d

∥∥∥∥
= d lim

n,m→∞

∥∥∥∥ yn − x0

∥yn − x0∥
− ym − x0

∥ym − x0∥

∥∥∥∥
→ 0,

as n,m → ∞, that is, {yn} is a Cauchy sequence. By the completeness of X1,
yn → z ∈ X1 for some z ∈ X1 and ∥z − x1∥ = d.

If there exists another z′ ∈ X1 satisfying ∥z′ − x0∥ = d, assume that∥∥∥∥z′ − x0

d
− z − x0

d

∥∥∥∥ ≥ ε

for some ε > 0. Then, for some θ ∈ (0, 1) determined by ε,∥∥∥∥12 z′ − x0

d
+

1

2

z − x0

d

∥∥∥∥ =

∥∥∥∥ 1
2
(z + z′)− x0

d

∥∥∥∥ < 1− θ.

That means the distance between x0 and (z + z′)/2 ∈ X1 is strictly less than d,
but this is impossible.

Theorem 4.19. The space Lp(µ), 1 < p < ∞, is uniformly convex. Conse-
quently, it satisfies the projection property.

This theorem relies on two inequalities.

Proposition 4.20 (Clarkson’s Inequalities).
Let f and g be in Lp(µ). We have

(a) For p ≥ 2, ∥∥∥∥f + g

2

∥∥∥∥p
p

+

∥∥∥∥f − g

2

∥∥∥∥p
p

≤ 1

2

(
∥f∥pp + ∥g∥pp

)
.

(b) For p ∈ (1, 2),

∥f + g∥qp + ∥f − g∥qp ≤ 2
(
∥f∥pp + ∥g∥pp

)q−1

,

where p and q are conjugate.

Now we prove Clarkson’s inequalities.
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Proof. (a) We note that (a) follows from integrating the following elementary
inequality ∣∣∣∣x+ y

2

∣∣∣∣p + ∣∣∣∣x− y

2

∣∣∣∣p ≤ 1

2
(|x|p + |y|p) , p ≥ 2, x, y ∈ R,

after substituting x and y by f(x) and g(x) respectively. Again, using the sym-
metry in this inequality, it suffices to show it under x > y > 0. Setting z = y/x,
we further reduce to(

1 + z

2

)p

+

(
1− z

2

)p

≤ 1

2
(1 + zp), z ∈ [0, 1].

Let

φ(z) =

(
1 + z

2

)p

+

(
1− z

2

)p

− 1

2
(1 + zp).

Then φ(0) = 2−p − 2−1 < 0, φ(1) = 1 − 1 = 0. If φ′(z) ≥ 0, then φ(z) ≤ 0 on
[0, 1] and we are done. We compute

φ′(z) =
p

2p
[
(1 + z)p−1 − (1− z)p−1 − 2p−1zp−1

]
=

p

2p
zp−1

[
(w + 1)p−1 − (w − 1)p−1 − 2p−1

]
, w =

1

z
∈ [1,∞).

Let h(w) = (w+ 1)p−1 − (w− 1)p−1 − 2p−1. Then h(1) = 0 and h′(w) ≥ 0 (easily
seen after using p ≥ 2), so h(w) ≥ 0 and φ′(z) ≥ 0. We have established (a).
(b) We need another inequality

|x+ y|q + |x− y|q ≤ 2 (|x|p + |y|p)q−1
, x, y ∈ R. (4.3)

As before it reduces to

(1 + z)q + (1− z)q ≤ 2(1 + zp)q−1, z ∈ [0, 1].

Let
f(α, z) = (1 + α1−qz)(1 + αz)q−1 + (1− α1−qz)(1− αz)q−1.

Then f(1, z) = (1 + z)q + (1− z)q and f(zp−1, z) = 2(1 + zp)q−1. As zp−1 < 1, it
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suffices to show ∂f/∂α(α, z) ≤ 0 for z, α ∈ (0, 1). We have

∂f

∂α
(α, z) = (1− q)α−qz(1 + αz)q−1 + (1 + α1−qz)(q − 1)(1 + αz)q−2z

− (1− q)α−qz(1− αz)q−1 − (1− α1−qz)(1− αz)z(q − 1)

= (1− q)z
[
α−q(1 + αz)− 1− α1−qz

]
(1 + αz)q−2

− (1− q)z
[
α−q(1− αz)− 1 + α1−qz

]
(1− αz)q−2

= (1− q)z(α−q − 1)
[
(1 + αz)q−2 − (1− αz)q−2

]
≤ 0.

Using q > 2 and α ∈ (0, 1), (4.3) holds. However, (b) doesn’t come from (4.3) by
integration. We need one more result, namely, for 0 < p < 1 and non-negative
f, g,

∥f + g∥p ≥ ∥f∥p + ∥g∥p . (4.4)

We leave the proof of (4.4) as an exercise. Now,

∥f∥qp =
(∫

|f |p dµ

) q
p

=

(∫
|f |q(p−1) dµ

) 1
p−1

= ∥|f |q∥p−1 ,

and

∥f + g∥qp + ∥f − g∥qp = ∥|f + g|q∥p−1 + ∥|f − g|q∥p−1

≤ ∥|f + g|q + |f − g|q∥p−1 (use 0 < p− 1 < 1 and (4.4))

=

[∫
(|f + g|q + |f − g|q)p−1

dµ

] 1
p−1

≤ 2

[∫
(|f |p + |g|p)(q−1)(p−1)

dµ

] 1
p−1

(by (4.3))

= 2

(∫
|f |p dµ+

∫
|g|p dµ

) 1
p−1

= 2
(
∥f∥pp + ∥g∥pp

)q−1

,

and (b) follows after noting (p− 1)(q − 1) = 1 in the last step.

Proof of Theorem 4.16. It remains to show that Φ is onto, i.e., for Λ ∈ Lp(µ)′,
there is some g ∈ Lq(µ) such that

Λf =

∫
fg dµ, ∀f ∈ Lp(µ).

We fix some f1 ∈ Lp(µ) \ kerΛ. As Lp(µ) is uniformly convex, there is an
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h0 ∈ kerΛ such that

∥h0 − f1∥p ≤ ∥f − f1∥p , ∀f ∈ kerΛ.

That is to say,
φ(t) = ∥h0 + tf − f1∥pp

attains its minimum at t = 0 and φ′(0) = 0 (the differentiability of φ is left as an
exercise). We have

0 = φ′(0) = p

∫
|h0 − f1|p−2 (h0 − f1)f dµ, ∀f ∈ kerΛ.

Letting g1 = |h0 − f1|p−2 (h0 − f1), we’ve∫
|g1|q dµ =

∫
|h0 − f1|(p−1)q =

∫
|h0 − f1|p dµ < ∞,

so g1 ∈ Lq(µ) and ∫
g1f dµ = 0, ∀f ∈ kerΛ. (4.5)

It shows that the linear functional f 7→
∫
fg1dµ has the same kernel as Λ. Hence

Λ = Λcg1 for some constant c. Hence Φ is onto and the duality holds. In the
following we make c more explicit. You may skip it.

Recall that h0 − f1 /∈ kerΛ, so for every f ∈ Lp(µ), by the codimension one
property of Λ we can find α and f2 ∈ kerΛ such that

f = α(h0 − f1) + f2, α =
Λf

Λ(h0 − f1)
.

Multiply both sides by g1 and using (4.5) to get∫
fg1 dµ = α

∫
(h0 − f1)g1 dµ+

∫
f2g1 dµ

= α

∫
|h0 − f1|p dµ,

i.e.,

Λf =
Λ(h0 − f1)

∥h0 − f1∥pp

∫
fg1 dµ, ∀f ∈ Lp.

So

Λf =

∫
fg dµ
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where

g =
Λ(h0 − f1)

∥h0 − f1∥pp
g1.

So far we have left out the dual space of L1(µ), which is given by L∞(µ).
Now we discuss it. A µ-measurable function in (X,M, µ) is called essentially
bounded if there exist some M and a measure zero set N such that |f(x)| ≤ M ,
∀x ∈ X \ N . The collection of all essentially bounded functions form a vector
space. For an essentially bounded function, let its essential supremum norm be

∥f∥∞ = inf {β : µ {x : |f(x)| ≥ β} = 0} .

One can show that (L∞(µ), ∥·∥∞) forms a Banach space after identifying f and g if
they are different at a set of measure zero. The space L∞(µ) is not as nice as Lp(µ)
for p ∈ (1,∞). For example, in the case of the Lebesgue measure, L∞(Rn,Ln)
is not separable and continuous functions are not dense in it. Nevertheless, it
still comes up as the dual space of L1(µ) for a σ-finite measure µ including the
n-dimensional Lebesgue measure. Duality may not hold when the measure is
not σ-finite, see [R]. On the other hand, it is clear that every function in L1(µ)
induces a bounded linear functional on L∞(µ), but the dual space of L∞(µ) is
in general larger and difficult to describe. Fortunately, it seldom comes up in
applications, see [HS] for further information.

Theorem 4.21. Let (X,M, µ) be σ-finite. Then for Λ ∈ L1(µ)′, there exists
some g ∈ L∞(µ) such that Λ = Λg.

I let you provide a proof of this theorem.

4.5 Strong Convergence of Lp-sequences

Results concerning the L1-convergence of sequences of functions are discussed in
Chapter 1. Here we present two results on the convergence of Lp-functions.

Proposition 4.22 (Brezis-Lieb Lemma). Consider Lp(µ), 1 ≤ p < ∞. Sup-
pose that ∥fn∥p ≤ M and fn → f a.e.. Then

lim
n→∞

∫
| |fn|p − |fn − f |p − |f |p |dµ = 0.

Proof. Note the elementary inequality (see below), for p > 1,

| |a+ b|p − |a|p | ≤ ε |a|p + Cε |b|p , a, b ∈ R.
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Taking gn = fn − f as a and f as b,

| |f + gn|p − |gn|p | ≤ ε |gn|p + Cε |f |p ,

or,
−ε |gn|p − Cε |f |p ≤ |f + gn|p − |gn|p ≤ ε |gn|p + Cε |f |p .

we have

−ε |gn|p − (Cε + 1) |f |p ≤ |f + gn|p − |gn|p − |f |p ≤ ε |gn|p + (Cε − 1) |f |p ,

which implies

| |f + gn|p − |gn|p − |f |p | ≤ ε |gn|p + (1 + Cε) |f |p ,

and
(| |f + gn|p − |gn|p − |f |p | − ε |gn|p )+ ≤ (1 + Cε) |f |p .

By assumption the function Φn ≡ ||f + gn|p−|gn|p−|f |p| → 0. By Lebesgue’s
dominated convergence theorem,

lim
n→∞

∫
(| |f + gn|p − |gn|p − |f |p | − ε |gn|p)+ dµ = 0.

Using ∫
(F −G) =

∫
(F −G)+ −

∫
(F −G)− ≤

∫
(F −G)+,

we have

lim
n→∞

∫
| |f + gn|p − |gn|p − |f |p | dµ ≤ ε lim

n→∞

∫
|gn|p dµ.

As ∫
|gn|p dµ =

∫
|fn − f |p dµ ≤ 2p

(∫
|fn|p dµ+

∫
|f |p dµ

)
≤ 2p+1Mp,

where Fatou’s lemma is used in the last step, we conclude that

lim
n→∞

∫
| |f + gn|p − |gn|p − |f |p | dµ ≤ 2p+1Mpε,

and the desired result follows by letting ε ↓ 0.

I leave the case p = 1 as exercise. Note that this proposition tells us what is
missing in Fatou’s lemma.

We provide a proof of the elementary inequality used in the proof above. We
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have

|a+ b|p − |a|p =
∫ 1

0

d

dt
|a+ tb|p dt

= p

∫ 1

0

|a+ tb|p−2 (a+ tb)b dt .

Therefore,

||a+ b|p − |a|p| ≤ p

∫ 1

0

(|a|+ |b|)p−1 |b| dt

≤ p2p−1
(
|a|p−1 + |b|p−1) |b|

≤ p2p−1 |a|p−1 |b|+ p2p−1 |b|p

≤ ε |a|p + Cε |b|p ,

where in the last step we have used Young’s inequality

xy ≤ xα

α
+

yβ

β
,

1

α
+

1

β
= 1, x, y ≥ 0

taking x = |a|p−1, y = |b| and suitable α, β
Next we have the Vitali convergence theorem. This theorem is used when a

dominator is not available so Lebesgue’s dominated convergence theorem cannot
be applied.

Theorem 4.23 (Vitali’s Convergence Theorem). Let µ(X) < ∞ and {fn} ⊂
L1(µ) satisfy

(a) fn → f a.e., and

(b) {fn} is uniformly integrable.

Then fn → f in L1(µ).

A sequence (or a set) of integrable functions is called uniformly integrable if
supn

∫
|fn|dµ < ∞ and for every ε > 0, there exists some δ such that∫

E

|fn| dµ < ε ∀n whenever E is measurable with µ(E) < δ.

Proof. By Fatou’s lemma ∫
|f |dµ ≤ lim inf

n→∞

∫
|fn|dµ,

so f ∈ L1(µ). In particular, it is finite almost everywhere. By (b), there exists
a δ ≤ ε such that the above estimate holds. For this ε, we may apply Egorov’s
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theorem to find some E1, µ(E1) < ε, such that fn → f uniformly on X \E1, that
is,

lim
n→∞

∥fn − f∥L∞(X\E1)
= 0.

It follows that ∫
|fn − f | dµ =

∫
X\E1

|fn − f | dµ+

∫
E1

|fn − f | dµ

≤ µ(X \ E1) ∥fn − f∥L∞(X\E1)
+ 2ε.

Note that

∫
E1

|f | dµ ≤ ε by Fatou’s lemma. So

lim
n→∞

∫
|fn − f | dµ ≤ µ(X \ E1) lim

n→∞
∥fn − f∥L∞(X\E1)

+ 2ε

= 2ε,

and

lim
n→∞

∫
|fn − f | dµ = 0.

By looking at a sequence consisting of a “bump” translating to infinity, we
see that the condition µ(X) < ∞ cannot be removed.

4.6 Weak Convergence of Lp-sequences

Weak convergence is a concept in a normed space. We call a sequence {xn}
converges weakly to x in the normed space X, written as xn ⇀ x, if Λxn → Λx for
all Λ ∈ X ′. The usual convergence in norm is sometimes called strong convergence
in contrast with this new notion of convergence. It is clear that xn → x implies
xn ⇀ x but the converse is not always true. In fact, for each Λ ∈ X ′,

|Λxn − Λx| = |Λ(xn − x)| ≤ ∥Λ∥ ∥xn − x∥ → 0

as xn → x in norm. The weak limit is also unique, for, if xn ⇀ x1 and xn ⇀ x2,
then z = x1 − x2 satisfies Λz = 0 ∀z ∈ X. As a consequence of Hahn-Banach
theorem, there always exists a bounded linear functional Λ1, satisfying Λ1z = ∥z∥
(for every given z), ∥z∥ = Λ1z = 0, and x1 = x2.

When adapted to the Lp-setting, by duality we know that fn ⇀ f in Lp(µ),
1 < p < ∞, if and only if∫

fng dµ →
∫
fg dµ, ∀g ∈ Lq(µ).
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It is also valid for p = 1 when µ is σ-finite.

Example 4.1. Let fn be a continuous function in [0, 1] whose support [an, bn]
shrinks to x0 ∈ (0, 1) as n → ∞. We also require ∥fn∥p = 1. Then fn ⇀ 0
in Lp(0, 1). For, as all Lq-functions vanishing near x0 forms a dense subset of

Lq(0, 1) and

∫
fng dx = 0 for such g and large n, we have fn ⇀ 0 in Lp(0, 1),

1 < p < ∞. On the other hand, ais ∥fn − 0∥p = ∥fn∥p = 1, {fn} does not
converge to 0 strongly.

Example 4.2. Let fn(x) = sin 2nπx, x ∈ [0, 1]. Then fn ⇀ in Lp(0, 1) for
1 ≤ p < ∞. To see this, let g ∈ C[0, 1] first. We need to show that∫ 1

0

sin 2nπxg(x) dx → 0 as n → ∞.

We have ∫ 1

0

sin 2nπxg(x) dx =

∫ 2nπ

0

sin yg
( y

2nπ

) dy

2nπ

=
1

2nπ

n∑
k=1

∫ 2kπ

2(k−1)π

sin yg
( y

2nπ

)
dy

=
1

2nπ

n∑
k=1

∫ 2π

0

sin zg

(
k − 1

n
+

z

2nπ

)
dz.

As g ∈ C[0, 1] is uniformly continuous, for every ε > 0, there is some δ such that

|g(x)− g(y)| < ε if |x− y| < δ. So, for all n large such that
∣∣∣ z

2nπ

∣∣∣ < δ, we have∣∣∣∣∫ 2π

0

sin zg

(
k − 1

n
+

z

2nπ

)
dz

∣∣∣∣
=

∣∣∣∣∫ 2π

0

sin z

(
g

(
k − 1

n
+

z

2nπ

)
− g

(
k − 1

n

))
dz

∣∣∣∣ (
use

∫ 2π

0

sin z dz = 0

)
≤ 2πε .

We have ∣∣∣∣∫ 1

0

sin 2nπxg(x) dx

∣∣∣∣ ≤ 2πε× n

2nπ
= ε,

and the desired result holds.
As C[0, 1] is dense in Lq[0, 1], for g ∈ Lq(0, 1), and ε > 0, we can find a
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g1 ∈ C[0, 1] such that ∥g − g1∥q < ε. Then∣∣∣∣∫ 1

0

sin 2nπxg(x) dx

∣∣∣∣ ≤ ∣∣∣∣∫ 1

0

sin 2nπx(g − g1)(x) dx

∣∣∣∣+ ∣∣∣∣∫ 1

0

sin 2nπxg1(x) dx

∣∣∣∣
≤ ∥sin 2nπx∥p ∥g − g1∥q +

∣∣∣∣∫ 1

0

sin 2nπxg1(x) dx

∣∣∣∣ .
As |sin 2nπx| ≤ 1,∣∣∣∣∫ 1

0

sin 2nπxg(x) dx

∣∣∣∣ ≤ ∥g − g1∥q
∣∣∣∣∫ 1

0

sin 2nπxg(x) dx

∣∣∣∣ .
It follows that

lim
n→∞

∣∣∣∣∫ 1

0

sin 2nπxg(x) dx

∣∣∣∣ ≤ ε+ lim
n→∞

∣∣∣∣∫ 1

0

sin 2nπxg1(x) dx

∣∣∣∣
≤ ε.

We conclude that {sin 2nπx} converges weakly to 0 as n → ∞. Clearly the
convergence is not strong.

We examine the properties of weakly convergent Lp-sequences.

Proposition 4.24. Let {fn} be a weakly convergent sequence in some Lp(µ),
1 ≤ p ≤ ∞. Then {fn} is bounded in Lp-norm.

This is in fact contained in a general result in functional analysis. Let {xn}
be a weakly convergent sequence in a Banach space X. It is always true that
there is some M such that ∥xn∥ ≤ M for all n. This is called the uniform
boundedness principle. In the following we give a proof which applies to Lp(µ)
for 1 < p < ∞. The cases p = 1,∞ are left as exercises. If you have learnt the
uniform boundedness principle, you may skip the following proof, for the proof
of the general case is more transparent than this special one.

Proof. Suppose fn ⇀ f for some f but {fn} is unbounded. By throwing away
other fn’s and relabeling the indices, we may assume ∥fn∥p ≥ 4n for all n. Let

αn ∈ (0, 1] be such that f̃n = αnfn satisfies ∥f̃n∥p= 4n. Let hn = |f̃n|p−1f̃n/∥f̃n∥p−1.
It is readily checked that ∥hn∥q = 1. We let

h =
∞∑
j=1

1

3j
σjhj,

where σj ∈ {−1, 1} are to be chosen later. We claim that h ∈ Lq(µ). For, looking
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at the difference of the partial sums∥∥∥∥∥
n∑

j=1

1

3j
σjhj −

m∑
j=1

1

3j
σjhj

∥∥∥∥∥
q

=

∥∥∥∥∥
n∑

m+1

1

3j
σjhj

∥∥∥∥∥
q

≤
n∑

j=m+1

1

3j
∥hj∥q

=
1

2
× 1

3m
→ 0 as m → ∞.

Thus the partial sums converges in Lq-norm to h. Let Λ1 be the bounded linear
functional on Lp(µ) induced by h,

Λ1g =

∫
gh dµ, g ∈ Lp(µ).

We have

Λ1f̃n =

∫
f̃nh dµ

=
∞∑
j=1

1

3j
σj

∫
hj f̃n dµ

=
n∑

j=1

1

3j
σj

∫
hj f̃n dµ+

∞∑
n+1

1

3j
σj

∫
hj f̃n dµ.

The second term in the right hand side is controlled by

∞∑
n+1

1

3j
σj

∫
hj f̃n dµ ≤

∞∑
n+1

1

3j
∥hj∥q ∥f̃n∥

=
∞∑
n+1

1

3j
4n =

1

2

(
4

3

)n

.

Now, we set σ1 = 1 and take σn (after σ2, . . . , σn−1 are fixed) to be 1 or −1 such

that
n−1∑
j=1

1

3j
σj

∫
hj f̃n dµ and σn

∫
hnf̃n dµ have the same sign. Then

n∑
j=1

1

3j
σj

∫
hj f̃n dµ ≥ 1

3n

∫
hnf̃n dµ.
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Combining these two estimates, we get

|Λ1fn| ≥
1

3n

∫
f̃nhn dµ− 1

2

(
4

3

)n

=
1

3n

∥∥∥f̃n∥∥∥
p
− 1

2

(
4

3

)n

=
1

2

(
4

3

)n

→ ∞ as n → ∞.

So

Λ1fn =
1

αn

Λ1f̃n → ∞ as n → ∞, too,

but this is in conflict with Λ1fn → Λ1f . We conclude that {fn} must be bounded.

Next, we show that the Lp-norm is lower semicontinuous with respect to weak
convergence.

Proposition 4.25. Let {fn} be weakly convergent to f in Lp(µ), 1 ≤ p < ∞.
Then

∥f∥p ≤ lim
n→∞

∥fn∥p .

This proposition looks like Fatou’s lemma, but be cautious that the assumption
of almost everywhere convergence is now replaced by weak convergence.

Proof. Let 1 < p < ∞. As f ∈ Lp(µ), the function g = |f |p−2 f ∈ Lq(µ). Let Λ1

be the bounded linear functional induced by g. We have

∥f∥pp = Λ1f

= lim
n→∞

Λ1fn

≤ ∥Λ1∥ lim
n→∞

∥fn∥p .

Noting that by duality,

∥Λ1∥ = ∥g∥q = ∥f∥
p
q
p ,

so

∥f∥pp ≤ ∥f∥
p
q
p lim

n→∞
∥fn∥p ,

and the result follows. When p = 1, use the function g = sgnf = f/|f | and argue
similarly.

This proposition is still valid for p = ∞ when µ is σ-finite. Supply a proof for
yourself.
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Proposition 4.26. Let {fn} be weakly convergent to f in Lp(µ), 1 ≤ p ≤ ∞.
There is {gn} in which each gn is a convex combinations of {fn} such that gn → f
in Lp(µ) strongly.

By a convex combination we mean g =
∑

j λjfnj
where λj ∈ (0, 1], j =

1, · · · , N, for some N satisfying
∑N

j=1 λj = 1 .
This result, called Mazur’s theorem, is a general one. In fact, let {xn} be

weakly convergent to x in some normed space X. Then x belongs to the closure
of the convex hull of {xn}. The convex hull of a set S ⊂ X is

Co(S) =

{
y : y =

n∑
j

λjxj, xj ∈ S, λj ∈ (0, 1],
n∑
j

λj = 1 for some n

}
.

The convex hull of S is the smallest convex set containing S. It is not hard to
show that its closure, Co(S), is also convex. Actually it is the smallest closed,
convex set containing S.

In the following we give a proof tailored to Lp(µ) for 1 < p < ∞. Recall
that Lp(µ) is uniformly convex for p in this range. In a general uniformly convex
space X, let K be a closed, convex set in X and x0 lie outside K. The projection
property asserts that there exists z ∈ K such that

∥z − x0∥ ≤ ∥x− x0∥ , ∀x ∈ K.

The proof of this fact is the same as the special case where K is a closed subspace,
see Proposition 4.18.

Proof. LetK = Co({fn}). We want to show that f ∈ K. Assume on the contrary
that f /∈ K. Then by uniform convexity, we can find some h ∈ K such that

∥h− f∥p ≤ ∥g − f∥p , ∀g ∈ Lp(µ).

That means the function

φ(t) = ∥(1− t)h+ tg − f∥pp , g ∈ Lp(µ), t ∈ [0, 1],

has a minimum at t = 0. So

φ′(0) = p

∫
|h− f |p−2 (h− f)(g − h) dµ ≥ 0.

Taking g = fn ∈ K, ∫
|h− f |p−2 (h− f)(fn − h) dµ ≥ 0.

Observing that h− f ∈ Lp(µ) so |h− f |p−2 (h− f) ∈ Lq(µ) and fn ⇀ f in Lp(µ),

27



we have ∫
|h− f |p−2 (h− f)fn dµ →

∫
|h− f |p−2 (h− f)f dµ.

It follows that ∫
|h− f |p−2 (h− f)(f − h) dµ ≥ 0,

that is, ∫
|h− f |p dµ ≤ 0

which forces f = h ∈ K, contradiction holds.

A nice property that makes weak convergence so important is the following
“weak Bolzano-Weierstrass property”. Recall that the Bolzano-Weierstrass prop-
erty asserts that every bounded sequence in Rn has a convergent subsequence.

Theorem 4.27. Let {fn} be bounded in Lp(µ), 1 < p < ∞. There exists a
subsequence {fnk

} such that fnk
⇀ f for some f in Lp(µ).

Proof. We prove this theorem by further assuming that Lq(µ) is separable. The
general case needs more knowledge from functional analysis, see any book on
functional analysis. See, for instance, chapter 10 in Peter Lax “Functional Anal-
ysis”.

Let {gk} be a dense subset of Lq(µ). By taking a Cantor diagonal process, we

can extract a subsequence {fnk
} from {fn} such that lim

k→∞

∫
fnk

gm dµ exists for

each gm. We claim that

lim
k→∞

∫
fnk

g dµ

exists for every g ∈ Lq(µ). For every ε > 0, we fix some gm such that ∥gm−g∥q< ε.
For large nk, nj, we have∣∣∣∣∫ (fnk

g − fnj
g)dµ

∣∣∣∣ ≤
∣∣∣∣∫ (fnk

− fnj
)(g − gm)dµ

∣∣∣∣+ ∣∣∣∣∫ (fnk
− fnj

)gmdµ

∣∣∣∣
≤ M∥g − gm∥q+ε

≤ (M + 1)ε ,

whereM is a bound on ∥fn∥p. Our claim follows. Now, define the linear functional
on Lq(µ) by

Λg = lim
k→∞

∫
fnk

g dµ .

We have

|Λg| ≤ lim inf
k→∞

∣∣∣∣∫ fnk
g dµ

∣∣∣∣
≤ M∥g∥q ,
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which shows that Λ is bounded. By duality, there is some f ∈ Lp(µ) such that∫
gf dµ = lim

k→∞

∫
gfnk

dµ, ∀g ∈ Lq(µ) ,

that is,
fnk

⇀ f in Lp(µ).

We point out that this theorem is not true when p = 1. Consider the bump
functions in Example 4.1 (p = 1). We have ∥fn∥p = 1, ∀n. If fnk

⇀ f for

some function f ∈ L1(µ), f must be 0. But g ≡ 1 ∈ L∞(0, 1) and
∫
fnk

g dx =∫
fnk

dx = 1 does not tend to 0.

Theorem 4.28. For p ∈ (1,∞), let {fn} ⊂ Lp(µ) satisfy (a) ∥fn∥p → ∥f∥p and
(b) fn ⇀ f as n → ∞. Then fn → f in Lp(µ).

You should compare this result with a corollary of Brezis-Lieb lemma, which
states that under (a) ∥fn∥p → ∥f∥p and (b) fn → f a.e., fn → f in Lp(µ) for
1 ≤ p < ∞.

The proof of this theorem depends on the uniform convexity of Lp(µ). Recall
that X is uniformly convex if for any pair of unit vectors x and y, for every
ε > 0, there exists some θ ∈ (0, 1) depending only on ε such that ∥x− y∥ ≥ ε ⇒∥∥1
2
(x+ y)

∥∥ < 1 − θ. When applying to Lp(µ), in order to show ∥fn − f∥p → 0,

it suffices to show
∥∥1
2
(fn + f)

∥∥
p
→ 0.

Proof. When f = 0 a.e., ∥fn − 0∥p → ∥0∥ = 0 is contained in (a). We assume
f ̸= 0.

As fn ⇀ f , 1
2
(fn + f) ⇀ f , by Proposition 4.24,

∥f∥p ≤ lim
n→∞

∥∥∥∥12(fn + f)

∥∥∥∥
p

.

On the other hand, ∥∥∥∥12(fn + f)

∥∥∥∥
p

≤ 1

2
∥fn∥p +

1

2
∥f∥p .

By (b),

lim
n→∞

∥∥∥∥12(fn + f)

∥∥∥∥
p

≤ lim
n→∞

(
1

2
∥fn∥p +

1

2
∥f∥p

)
= ∥f∥p .

It forces

lim
n→∞

∥∥∥∥12(fn + f)

∥∥∥∥
p

= ∥f∥p .
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Using (a) and ∥f∥p ̸= 0, it immediately implies

lim
n→∞

∥∥∥∥12
(

fn
∥fn∥p

+
f

∥f∥p

)∥∥∥∥
p

= 1.

By uniform convexity, ∥∥∥∥ fn
∥fn∥p

− f

∥f∥p

∥∥∥∥
p

→ 0.

By (a) again, we arrive at ∥fn − f∥p → 0 as n → ∞.

Comments on Chapter 4. Basic knowledge on functional analysis is needed
to have a good understanding of this chapter. Apart from [R] is our treatment
on the dual space of the Lp-space. Here we use the notion of uniform convex-
ity introduced by Clarkson (1936) who showed that Lp-spaces (p ∈ (1,∞)) are
uniformly convex by the inequalities that bear his name. Our proof of Theorem
4.17, which is taken from the web, is a direct extension of the arguments that
establish the self-duality of the L2-space, see also Lieb-Loss Analysis. Another
proof can be found in [HS]. Comparing with the different approach in [R], it does
not require the measure to be σ-finite. The standard proof found in [R] and many
other books is due to von Neumann. It is elegant but, in my opinion, is too tricky.
We will see it in next chapter. It is nice to have more than one proofs for an
important theorem.

A new ingredient is weak convergence. It is not covered in [R], but, in view
of its importance in applications, I decide to include it here. Many results could
be proved in the more general setting of Banach spaces other than the Lp-spaces.
Not to get too much involved in functional analysis, I provide self-contained
proofs here or there, and sometimes run into tedious arguments, for instance, the
proof of Proposition 4.24, which is just a special case of the uniform bounded-
ness principle. Those who have learnt functional analysis can simply ignore them.
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